100字范文,内容丰富有趣,生活中的好帮手!
100字范文 > 新闻主题分类任务——torchtext 库进行文本分类

新闻主题分类任务——torchtext 库进行文本分类

时间:2020-08-17 15:14:07

相关推荐

新闻主题分类任务——torchtext 库进行文本分类

目录

简介导入相关的torch工具包访问原始数据集迭代器使用原始训练数据集构建词汇表生成数据批处理和迭代器定义模型定义函数来训练模型和评估结果实例化并运行模型使用测试数据集评估模型测试随机新闻完整代码参考链接

简介

使用浅层网络构建新闻主题分类器。

以一段新闻报道中的文本描述内容为输入, 使用模型帮助我们判断它最有可能属于哪一种类型的新闻, 这是典型的文本分类问题, 我们这里假定每种类型是互斥的, 即文本描述有且只有一种类型。

导入相关的torch工具包

import timeimport torchimport torch.nn as nnfrom torchtext.datasets import AG_NEWSfrom torchtext.data.utils import get_tokenizerfrom torchtext.vocab import build_vocab_from_iteratorfrom torch.utils.data import DataLoaderfrom torch.utils.data.dataset import random_splitfrom torchtext.data.functional import to_map_style_datasetfrom TextClassificationModule import TextClassificationModule

访问原始数据集迭代器

torchtext 库提供了一些原始数据集迭代器,它们产生原始文本字符串。例如,AG_NEWS数据集迭代器将原始数据生成为标签和文本的元组。

# 可用设备检测, 有GPU的话将优先使用GPUdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 基本的英文分词器tokenizer = get_tokenizer('basic_english')# 训练数据加载器train_iter = AG_NEWS(split="train")test_iter = AG_NEWS(split="test")

对读取到的数据进行测试,该读取的数据是从网上自动下载到缓存,其中读取到的 train_iter 和 test_iter 为训练集和测试集,且均为迭代器类型。

print('test:')train_data = iter(train_iter)test_data = iter(test_iter)print(next(train_data))print(next(test_data))

运行结果

test:(3, "Wall St. Bears Claw Back Into the Black (Reuters) Reuters - Short-sellers, Wall Street's dwindling\\band of ultra-cynics, are seeing green again.")(3, "Fears for T N pension after talks Unions representing workers at Turner Newall say they are 'disappointed' after talks with stricken parent firm Federal Mogul.")

使用原始训练数据集构建词汇表

其中分词生成器中的 “_” 表示一个不用的变量即类别,text 表示新闻文本,如:

_ = 3

text = Wall St. Bears Claw Back Into the Black (Reuters) Reuters - Short-sellers, Wall Street's dwindling\\band of ultra-cynics, are seeing green again.

python 中 yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象。

示例

def yield_test(n): for i in range(n): yield call(i) print("i=",i) #做一些其它的事情print("do something.")print("end.") def call(i): return i*2 #使用for循环 for i in yield_test(5): print(i,",")

运行结果

0 , i= 0 2 , i= 1 4 , i= 2 6 , i= 3 8 , i= 4 do something. end.

使用原始训练数据集构建词汇表

# 分词生成器def yield_tokens(data_iter):for _, text in data_iter:yield tokenizer(text)# 根据训练数据构建词汇表,torchtext.vocabvocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])# 设置默认索引,当某个单词不在词汇表 vocab 时(OOV),返回该单词索引vocab.set_default_index(vocab["<unk>"])# 词汇表会将 token 映射到词汇表中的索引上print(vocab(["here", "is", "an", "example"]))# 构建数据加载器 dataloader# text_pipeline 将一个文本字符串转换为整数 List, List 中每项对应词汇表 vocab 中的单词的索引号text_pipeline = lambda x: vocab(tokenizer(x))# label_pipeline 将 label 转换为整数label_pipeline = lambda x: int(x) - 1# pipeline exampleprint(text_pipeline("hello world! I'am happy"))print(label_pipeline("10"))

运行结果

[475, 21, 30, 5297][12544, 50, 764, 282, 16, 1913, 2734]9

生成数据批处理和迭代器

def collate_batch(batch):label_list, text_list, offsets = [], [], [0]for (_label, _text) in batch:label_list.append(label_pipeline(_label))processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)text_list.append(processed_text)offsets.append(processed_text.size(0))label_list = torch.tensor(label_list, dtype=torch.int64)offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)text_list = torch.cat(text_list)return label_list.to(device), text_list.to(device), offsets.to(device)# 加载数据集合,转换为张量dataloader = DataLoader(train_iter, batch_size=8, shuffle=False, collate_fn=collate_batch)

定义模型

该模型由 nn.EmbeddingBag 层和用于分类目的的线性层组成。nn.EmbeddingBag 使用默认模式“mean”计算嵌入“bag”的平均值。尽管此处的文本条目具有不同的长度,但 nn.EmbeddingBag 模块在此处不需要填充,因为文本长度保存在偏移量中。

nn.EmbeddingBag 可以提高性能和内存效率以处理一系列张量。

import torch.nn as nnclass TextClassificationModule(nn.Module):def __init__(self, vocab_size, embed_dim, num_class):"""文本分类模型description: 类的初始化函数:param vocab_size: 整个语料包含的不同词汇总数:param embed_dim: 指定词嵌入的维度:param num_class: 文本分类的类别总数"""super(TextClassificationModule, self).__init__()# 实例化embedding层, sparse=True代表每次对该层求解梯度时, 只更新部分权重self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=True)# 实例化全连接层, 参数分别是embed_dim和num_classself.fc = nn.Linear(embed_dim, num_class)# 为各层初始化权重self.init_weights()def init_weights(self):"""初始化权重函数"""# 指定初始权重的取值范围数initrange = 0.5# 各层的权重参数都是初始化为均匀分布self.embedding.weight.data.uniform_(-initrange, initrange)self.fc.weight.data.uniform_(-initrange, initrange)# 偏置初始化为0self.fc.bias.data.zero_()def forward(self, text, offsets):""":param text: 文本数值映射后的结果:return: 与类别数尺寸相同的张量, 用以判断文本类别"""embedded = self.embedding(text, offsets)return self.fc(embedded)

定义函数来训练模型和评估结果

def train(dataloader):model.train()total_acc, total_count = 0, 0log_interval = 500start_time = time.time()for idx, (label, text, offsets) in enumerate(dataloader):optimizer.zero_grad()predicted_label = model(text, offsets)loss = criterion(predicted_label, label)loss.backward()torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)optimizer.step()total_acc += (predicted_label.argmax(1) == label).sum().item()total_count += label.size(0)if idx % log_interval == 0 and idx > 0:elapsed = time.time() - start_timeprint('| epoch {:3d} | {:5d}/{:5d} batches ''| accuracy {:8.3f}'.format(epoch, idx, len(dataloader),total_acc / total_count))total_acc, total_count = 0, 0start_time = time.time()def evaluate(dataloader):model.eval()total_acc, total_count = 0, 0with torch.no_grad():for idx, (label, text, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)loss = criterion(predicted_label, label)total_acc += (predicted_label.argmax(1) == label).sum().item()total_count += label.size(0)return total_acc / total_count

实例化并运行模型

# 加载数据集合,转换为张量dataloader = DataLoader(train_iter, batch_size=8, shuffle=False, collate_fn=collate_batch)# 一个嵌入维度为 64 的模型。词汇大小等于词汇实例的长度。类的数量等于标签的数量,num_class = len(set([label for (label, text) in train_iter]))vocab_size = len(vocab)emsize = 64model = TextClassificationModule(vocab_size, emsize, num_class).to(device)# 训练轮数EPOCHS = 10# 学习率LR = 5# 训练数据规模BATCH_SIZE = 64# 交叉熵损失函数criterion = torch.nn.CrossEntropyLoss()# 优化器optimizer = torch.optim.SGD(model.parameters(), lr=LR)# 调整学习率机制scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.1)total_accu = Nonetrain_dataset = to_map_style_dataset(train_iter)test_dataset = to_map_style_dataset(test_iter)# 划分训练集中5%的数据最为验证集num_train = int(len(train_dataset) * 0.95)split_train_, split_valid_ = random_split(train_dataset, [num_train, len(train_dataset) - num_train])train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)test_dataloader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)for epoch in range(1, EPOCHS + 1):epoch_start_time = time.time()train(train_dataloader)accu_val = evaluate(valid_dataloader)if total_accu is not None and total_accu > accu_val:scheduler.step()else:total_accu = accu_valprint('-' * 59)print('| end of epoch {:3d} | time: {:5.2f}s | ''valid accuracy {:8.3f} '.format(epoch,time.time() - epoch_start_time,accu_val))print('-' * 59)

运行结果

| epoch 1 | 500/ 1782 batches | accuracy 0.689| epoch 1 | 1000/ 1782 batches | accuracy 0.856| epoch 1 | 1500/ 1782 batches | accuracy 0.873-----------------------------------------------------------| end of epoch 1 | time: 23.38s | valid accuracy 0.879 -----------------------------------------------------------| epoch 2 | 500/ 1782 batches | accuracy 0.896| epoch 2 | 1000/ 1782 batches | accuracy 0.904| epoch 2 | 1500/ 1782 batches | accuracy 0.900-----------------------------------------------------------| end of epoch 2 | time: 32.21s | valid accuracy 0.891 -----------------------------------------------------------| epoch 3 | 500/ 1782 batches | accuracy 0.915| epoch 3 | 1000/ 1782 batches | accuracy 0.916| epoch 3 | 1500/ 1782 batches | accuracy 0.915-----------------------------------------------------------| end of epoch 3 | time: 36.85s | valid accuracy 0.899 -----------------------------------------------------------| epoch 4 | 500/ 1782 batches | accuracy 0.925| epoch 4 | 1000/ 1782 batches | accuracy 0.925| epoch 4 | 1500/ 1782 batches | accuracy 0.922-----------------------------------------------------------| end of epoch 4 | time: 20.15s | valid accuracy 0.897 -----------------------------------------------------------| epoch 5 | 500/ 1782 batches | accuracy 0.937| epoch 5 | 1000/ 1782 batches | accuracy 0.938| epoch 5 | 1500/ 1782 batches | accuracy 0.936-----------------------------------------------------------| end of epoch 5 | time: 28.52s | valid accuracy 0.905 -----------------------------------------------------------| epoch 6 | 500/ 1782 batches | accuracy 0.939| epoch 6 | 1000/ 1782 batches | accuracy 0.938| epoch 6 | 1500/ 1782 batches | accuracy 0.941-----------------------------------------------------------| end of epoch 6 | time: 33.47s | valid accuracy 0.905 -----------------------------------------------------------| epoch 7 | 500/ 1782 batches | accuracy 0.940| epoch 7 | 1000/ 1782 batches | accuracy 0.941| epoch 7 | 1500/ 1782 batches | accuracy 0.939-----------------------------------------------------------| end of epoch 7 | time: 20.75s | valid accuracy 0.904 -----------------------------------------------------------| epoch 8 | 500/ 1782 batches | accuracy 0.941| epoch 8 | 1000/ 1782 batches | accuracy 0.941| epoch 8 | 1500/ 1782 batches | accuracy 0.940-----------------------------------------------------------| end of epoch 8 | time: 27.11s | valid accuracy 0.906 -----------------------------------------------------------| epoch 9 | 500/ 1782 batches | accuracy 0.942| epoch 9 | 1000/ 1782 batches | accuracy 0.942| epoch 9 | 1500/ 1782 batches | accuracy 0.942-----------------------------------------------------------| end of epoch 9 | time: 34.83s | valid accuracy 0.906 -----------------------------------------------------------| epoch 10 | 500/ 1782 batches | accuracy 0.942| epoch 10 | 1000/ 1782 batches | accuracy 0.942| epoch 10 | 1500/ 1782 batches | accuracy 0.940-----------------------------------------------------------| end of epoch 10 | time: 22.78s | valid accuracy 0.906 -----------------------------------------------------------

使用测试数据集评估模型

print('Checking the results of test dataset.')accu_test = evaluate(test_dataloader)print('test accuracy {:8.3f}'.format(accu_test))

运行结果

Checking the results of test dataset.test accuracy 0.906

测试随机新闻

# 测试随机新闻# 使用迄今为止最好的模型并测试高尔夫新闻。ag_news_label = {1: "World",2: "Sports",3: "Business",4: "Sci/Tec"}def predict(text, text_pipeline):with torch.no_grad():text = torch.tensor(text_pipeline(text))output = model(text, torch.tensor([0]))return output.argmax(1).item() + 1ex_text_str = "MEMPHIS, Tenn. – Four days ago, Jon Rahm was \enduring the season’s worst weather conditions on Sunday at The \Open on his way to a closing 75 at Royal Portrush, which \considering the wind and the rain was a respectable showing. \Thursday’s first round at the WGC-FedEx St. Jude Invitational \was another story. With temperatures in the mid-80s and hardly any \wind, the Spaniard was 13 strokes better in a flawless round. \Thanks to his best putting performance on the PGA Tour, Rahm \finished with an 8-under 62 for a three-stroke lead, which \was even more impressive considering he’d never played the \front nine at TPC Southwind."model = model.to("cpu")print("This is a %s news" % ag_news_label[predict(ex_text_str, text_pipeline)])

运行结果

This is a Sports news

完整代码

import timeimport torchimport torch.nn as nnfrom torchtext.datasets import AG_NEWSfrom torchtext.data.utils import get_tokenizerfrom torchtext.vocab import build_vocab_from_iteratorfrom torch.utils.data import DataLoaderfrom torch.utils.data.dataset import random_splitfrom torchtext.data.functional import to_map_style_dataset# 可用设备检测, 有GPU的话将优先使用GPUdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 基本的英文分词器tokenizer = get_tokenizer('basic_english')# 训练数据加载器train_iter = AG_NEWS(split="train")test_iter = AG_NEWS(split="test")# print('test:')# train_data = iter(train_iter)# test_data = iter(test_iter)# print(next(train_data))# print(next(test_data))# 分词生成器def yield_tokens(data_iter):for _, text in data_iter:yield tokenizer(text)# 根据训练数据构建词汇表vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=["<unk>"])# 设置默认索引,当某个单词不在词汇表 vocab 时(OOV),返回该单词索引vocab.set_default_index(vocab["<unk>"])# 词汇表会将 token 映射到词汇表中的索引上# print(vocab(["here", "is", "an", "example"]))# 构建数据加载器 dataloader# text_pipeline 将一个文本字符串转换为整数 List, List 中每项对应词汇表 vocab 中的单词的索引号text_pipeline = lambda x: vocab(tokenizer(x))# label_pipeline 将 label 转换为整数label_pipeline = lambda x: int(x) - 1# pipeline example# print(text_pipeline("hello world! I'am happy"))# print(label_pipeline("10"))# 模型class TextClassificationModule(nn.Module):def __init__(self, vocab_size, embed_dim, num_class):"""文本分类模型description: 类的初始化函数:param vocab_size: 整个语料包含的不同词汇总数:param embed_dim: 指定词嵌入的维度:param num_class: 文本分类的类别总数"""super(TextClassificationModule, self).__init__()# 实例化embedding层, sparse=True代表每次对该层求解梯度时, 只更新部分权重self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=True)# 实例化全连接层, 参数分别是embed_dim和num_classself.fc = nn.Linear(embed_dim, num_class)# 为各层初始化权重self.init_weights()def init_weights(self):"""初始化权重函数"""# 指定初始权重的取值范围数initrange = 0.5# 各层的权重参数都是初始化为均匀分布self.embedding.weight.data.uniform_(-initrange, initrange)self.fc.weight.data.uniform_(-initrange, initrange)# 偏置初始化为0self.fc.bias.data.zero_()def forward(self, text, offsets):""":param text: 文本数值映射后的结果:return: 与类别数尺寸相同的张量, 用以判断文本类别"""embedded = self.embedding(text, offsets)return self.fc(embedded)def collate_batch(batch):label_list, text_list, offsets = [], [], [0]for (_label, _text) in batch:label_list.append(label_pipeline(_label))processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)text_list.append(processed_text)offsets.append(processed_text.size(0))label_list = torch.tensor(label_list, dtype=torch.int64)offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)text_list = torch.cat(text_list)return label_list.to(device), text_list.to(device), offsets.to(device)def train(dataloader):model.train()total_acc, total_count = 0, 0log_interval = 500start_time = time.time()for idx, (label, text, offsets) in enumerate(dataloader):optimizer.zero_grad()predicted_label = model(text, offsets)loss = criterion(predicted_label, label)loss.backward()torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)optimizer.step()total_acc += (predicted_label.argmax(1) == label).sum().item()total_count += label.size(0)if idx % log_interval == 0 and idx > 0:elapsed = time.time() - start_timeprint('| epoch {:3d} | {:5d}/{:5d} batches ''| accuracy {:8.3f}'.format(epoch, idx, len(dataloader),total_acc / total_count))total_acc, total_count = 0, 0start_time = time.time()def evaluate(dataloader):model.eval()total_acc, total_count = 0, 0with torch.no_grad():for idx, (label, text, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)loss = criterion(predicted_label, label)total_acc += (predicted_label.argmax(1) == label).sum().item()total_count += label.size(0)return total_acc / total_count# 加载数据集合,转换为张量dataloader = DataLoader(train_iter, batch_size=8, shuffle=False, collate_fn=collate_batch)# 一个嵌入维度为 64 的模型。词汇大小等于词汇实例的长度。类的数量等于标签的数量,num_class = len(set([label for (label, text) in train_iter]))vocab_size = len(vocab)emsize = 64model = TextClassificationModule(vocab_size, emsize, num_class).to(device)# 训练轮数EPOCHS = 10# 学习率LR = 5# 训练数据规模BATCH_SIZE = 64# 交叉熵损失函数criterion = torch.nn.CrossEntropyLoss()# 优化器optimizer = torch.optim.SGD(model.parameters(), lr=LR)# 调整学习率机制scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.1)total_accu = Nonetrain_dataset = to_map_style_dataset(train_iter)test_dataset = to_map_style_dataset(test_iter)# 划分训练集中5%的数据最为验证集num_train = int(len(train_dataset) * 0.95)split_train_, split_valid_ = random_split(train_dataset, [num_train, len(train_dataset) - num_train])train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)test_dataloader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)for epoch in range(1, EPOCHS + 1):epoch_start_time = time.time()train(train_dataloader)accu_val = evaluate(valid_dataloader)if total_accu is not None and total_accu > accu_val:scheduler.step()else:total_accu = accu_valprint('-' * 59)print('| end of epoch {:3d} | time: {:5.2f}s | ''valid accuracy {:8.3f} '.format(epoch,time.time() - epoch_start_time,accu_val))print('-' * 59)'''使用测试数据集评估模型'''print('Checking the results of test dataset.')accu_test = evaluate(test_dataloader)print('test accuracy {:8.3f}'.format(accu_test))# 测试随机新闻# 使用迄今为止最好的模型并测试高尔夫新闻。ag_news_label = {1: "World",2: "Sports",3: "Business",4: "Sci/Tec"}def predict(text, text_pipeline):with torch.no_grad():text = torch.tensor(text_pipeline(text))output = model(text, torch.tensor([0]))return output.argmax(1).item() + 1ex_text_str = "MEMPHIS, Tenn. – Four days ago, Jon Rahm was \enduring the season’s worst weather conditions on Sunday at The \Open on his way to a closing 75 at Royal Portrush, which \considering the wind and the rain was a respectable showing. \Thursday’s first round at the WGC-FedEx St. Jude Invitational \was another story. With temperatures in the mid-80s and hardly any \wind, the Spaniard was 13 strokes better in a flawless round. \Thanks to his best putting performance on the PGA Tour, Rahm \finished with an 8-under 62 for a three-stroke lead, which \was even more impressive considering he’d never played the \front nine at TPC Southwind."model = model.to("cpu")print("This is a %s news" % ag_news_label[predict(ex_text_str, text_pipeline)])

运行结果

| epoch 1 | 500/ 1782 batches | accuracy 0.689| epoch 1 | 1000/ 1782 batches | accuracy 0.856| epoch 1 | 1500/ 1782 batches | accuracy 0.873-----------------------------------------------------------| end of epoch 1 | time: 23.38s | valid accuracy 0.879 -----------------------------------------------------------| epoch 2 | 500/ 1782 batches | accuracy 0.896| epoch 2 | 1000/ 1782 batches | accuracy 0.904| epoch 2 | 1500/ 1782 batches | accuracy 0.900-----------------------------------------------------------| end of epoch 2 | time: 32.21s | valid accuracy 0.891 -----------------------------------------------------------| epoch 3 | 500/ 1782 batches | accuracy 0.915| epoch 3 | 1000/ 1782 batches | accuracy 0.916| epoch 3 | 1500/ 1782 batches | accuracy 0.915-----------------------------------------------------------| end of epoch 3 | time: 36.85s | valid accuracy 0.899 -----------------------------------------------------------| epoch 4 | 500/ 1782 batches | accuracy 0.925| epoch 4 | 1000/ 1782 batches | accuracy 0.925| epoch 4 | 1500/ 1782 batches | accuracy 0.922-----------------------------------------------------------| end of epoch 4 | time: 20.15s | valid accuracy 0.897 -----------------------------------------------------------| epoch 5 | 500/ 1782 batches | accuracy 0.937| epoch 5 | 1000/ 1782 batches | accuracy 0.938| epoch 5 | 1500/ 1782 batches | accuracy 0.936-----------------------------------------------------------| end of epoch 5 | time: 28.52s | valid accuracy 0.905 -----------------------------------------------------------| epoch 6 | 500/ 1782 batches | accuracy 0.939| epoch 6 | 1000/ 1782 batches | accuracy 0.938| epoch 6 | 1500/ 1782 batches | accuracy 0.941-----------------------------------------------------------| end of epoch 6 | time: 33.47s | valid accuracy 0.905 -----------------------------------------------------------| epoch 7 | 500/ 1782 batches | accuracy 0.940| epoch 7 | 1000/ 1782 batches | accuracy 0.941| epoch 7 | 1500/ 1782 batches | accuracy 0.939-----------------------------------------------------------| end of epoch 7 | time: 20.75s | valid accuracy 0.904 -----------------------------------------------------------| epoch 8 | 500/ 1782 batches | accuracy 0.941| epoch 8 | 1000/ 1782 batches | accuracy 0.941| epoch 8 | 1500/ 1782 batches | accuracy 0.940-----------------------------------------------------------| end of epoch 8 | time: 27.11s | valid accuracy 0.906 -----------------------------------------------------------| epoch 9 | 500/ 1782 batches | accuracy 0.942| epoch 9 | 1000/ 1782 batches | accuracy 0.942| epoch 9 | 1500/ 1782 batches | accuracy 0.942-----------------------------------------------------------| end of epoch 9 | time: 34.83s | valid accuracy 0.906 -----------------------------------------------------------| epoch 10 | 500/ 1782 batches | accuracy 0.942| epoch 10 | 1000/ 1782 batches | accuracy 0.942| epoch 10 | 1500/ 1782 batches | accuracy 0.940-----------------------------------------------------------| end of epoch 10 | time: 22.78s | valid accuracy 0.906 -----------------------------------------------------------Checking the results of test dataset.test accuracy 0.906This is a Sports newsProcess finished with exit code 0

参考链接

/tutorials/beginner/text_sentiment_ngrams_tutorial.html

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。