100字范文,内容丰富有趣,生活中的好帮手!
100字范文 > 【C++】obj模型文件解析(tiny_obj_loader)

【C++】obj模型文件解析(tiny_obj_loader)

时间:2023-02-27 23:12:49

相关推荐

【C++】obj模型文件解析(tiny_obj_loader)

obj模型文件解析

一、前言

由于本人打算使用Assimp来加载模型,这里记录一下tinyobjloader库的使用。之前也研究过fbxsdk,除了骨骼动画暂未读取外,代码自认为还算可靠。

tinyobjloader地址:

/tinyobjloader/tinyobjloader

而tinyobjloader库只有一个头文件,可以很方便的读取obj文件。支持材质,不过不支持骨骼动画,vulkan官方教程便是使用的它。不过没有骨骼动画还是有很大的局限性,这里只是分享一下怎么读取材质和拆分网格。

二、中间文件

我抽象了一个ModelObject类表示模型数据,而一个ModelObject包含多个Sub模型,每个Sub模型使用同一材质(有的人称为图元Primitive或DrawCall)。最后我将其保存为文件,这样我的引擎便可直接解析ModelObject文件,而不是再去读obj、fbx等其他文件了。

这一节可以跳过,下一节是真正使用tinyobjloader库。

//一个文件会有多个ModelObject,一个ModelObject根据材质分为多个ModelSub//注意ModelSub为一个材质,需要读取时合并网格class ModelObject{friend class VK;public://从源文件加载模型static vector<ModelObject*> Create(string_view path_name);void Load(string_view path_name);//保存到文件void SaveToFile(string_view path_name);private:vector<ModelObjectSub> _allSub; //下标减1 为材质,0为没有材质vector<Vertex> _allVertex;//顶点缓存vector<uint32_t> _allIndex;//索引缓存vector<ModelObjectMaterial> _allMaterial;//所有材质//------------------不同格式加载实现--------------------------------//objstatic vector<ModelObject*> _load_obj(string_view path_name);static vector<ModelObject*> _load_obj_2(string_view path_name);};

ModelObjectSub只是表示在索引缓存的一段范围:

//模型三角形范围struct ModelTriangleRange{ModelTriangleRange() :_countTriangle{ 0 },_offsetIndex{ 0 }{}size_t _countTriangle;size_t _offsetIndex;};//子模型对象 范围struct ModelObjectSub{ModelTriangleRange _range;};

而ModelObjectMaterial表示模型材质:

//! 材质struct Material{glm::vec4 _diffuseAlbedo;//漫反射率glm::vec3 _fresnelR0;//菲涅耳系数float _roughness;//粗糙度};//模型对象 材质struct ModelObjectMaterial{//最后转为Model时,变为可以用的着色器资源Material _material;string _materialName;//路径为空,则表示没有(VK加载时会返回0)string _pathTexDiffuse;string _pathTexNormal;};

三、使用

首先引入头文件:

#define TINYOBJLOADER_IMPLEMENTATION#include <tiny_obj_loader.h>

接口原型,将obj文件变为多个ModelObject:

vector<ModelObject*> ModelObject::_load_obj_2(string_view path_name);

取得文件名,和文件所在路径(会自动加载路径下的同名mtl文件,里面包含了材质):

string str_path = string{ path_name };string str_base = String::EraseFilename(path_name);const char* filename = str_path.c_str();const char* basepath = str_base.c_str();

基本数据:

debug(format("开始加载obj文件:{},{}", filename, basepath));bool triangulate = true;//三角化tinyobj::attrib_t attrib; // 所有的数据放在这里std::vector<tinyobj::shape_t> shapes;//子模型std::vector<tinyobj::material_t> materials;//材质std::string warn;std::string err;

加载并打印一些信息:

bool b_read = tinyobj::LoadObj(&attrib, &shapes, &materials, &warn, &err, filename,basepath, triangulate);//打印错误if (!warn.empty())debug_warn(warn);if (!err.empty()) debug_err(err);if (!b_read){debug_err(format("读取obj文件失败:{}", path_name));return {};}debug(format("顶点数:{}", attrib.vertices.size() / 3));debug(format("法线数:{}", attrib.normals.size() / 3));debug(format("UV数:{}", attrib.texcoords.size() / 2));debug(format("子模型数:{}", shapes.size()));debug(format("材质数:{}", materials.size()));

这将打印以下数据:

由于obj文件只产生一个ModelObject,我们如下添加一个,并返回顶点、索引、材质等引用,用于后面填充:

//obj只有一个ModelObjectvector<ModelObject*> ret;ModelObject* model_object = new ModelObject;std::vector<Vertex>& mo_vertices = model_object->_allVertex;std::vector<uint32_t>& mo_indices = model_object->_allIndex;vector<ModelObjectMaterial>& mo_material = model_object->_allMaterial;ret.push_back(model_object);

首先记录材质信息:

//------------------获取材质-------------------mo_material.resize(materials.size());for (size_t i = 0; i < materials.size(); ++i){tinyobj::material_t m = materials[i];debug(format("材质:{},{}", i, m.name));ModelObjectMaterial& material = model_object->_allMaterial[i];material._materialName = m.name;material._material._diffuseAlbedo = { m.diffuse[0], m.diffuse[1], m.diffuse[2], 1.0f };material._material._fresnelR0 = { m.specular[0], m.specular[1], m.specular[2] };material._material._roughness = ShininessToRoughness(m.shininess);if(!m.diffuse_texname.empty())material._pathTexDiffuse = str_base + m.diffuse_texname;if (!m.normal_texname.empty())material._pathTexNormal = str_base + m.normal_texname;}

这将产生以下输出:

然后遍历shape,按材质记录顶点。这里需要注意的是,一个obj文件有多个shape,每个shape由n个三角面组成。而每个三角形拥有独立的材质编号,所以这里按材质分别记录,而不是一般的合并为整体:

//------------------获取模型-------------------//按 材质 放入面的顶点vector<vector<tinyobj::index_t>> all_sub;all_sub.resize(1 + materials.size());//0为默认for (size_t i = 0; i < shapes.size(); i++) {//每一个子shapetinyobj::shape_t& shape = shapes[i];size_t num_index = shape.mesh.indices.size();size_t num_face = shape.mesh.num_face_vertices.size();debug(format("读取子模型:{},{}", i, shape.name));debug(format("索引数:{};面数:{}", num_index, num_face));//当前mesh下标(每个面递增3)size_t index_offset = 0;//每一个面for (size_t j = 0; j < num_face; ++j){int index_mat = shape.mesh.material_ids[j];//每个面的材质vector<tinyobj::index_t>& sub_idx = all_sub[1 + index_mat];sub_idx.push_back(shape.mesh.indices[index_offset++]);sub_idx.push_back(shape.mesh.indices[index_offset++]);sub_idx.push_back(shape.mesh.indices[index_offset++]);}}

按材质记录顶点的索引(tinyobj::index_t)后,接下来就是读取顶点的实际数据,并防止重复读取:

//生成子模型,并填入顶点std::unordered_map<tinyobj::index_t, size_t, hash_idx, equal_idx>uniqueVertices;//避免重复插入顶点size_t i = 0;for (vector<tinyobj::index_t>& sub_idx : all_sub){ModelObjectSub sub;sub._range._offsetIndex = i;sub._range._countTriangle = sub_idx.size() / 3;model_object->_allSub.push_back(sub);for (tinyobj::index_t& idx : sub_idx){auto iter = uniqueVertices.find(idx);if (iter == uniqueVertices.end()){Vertex v;//vv._pos[0] = attrib.vertices[idx.vertex_index * 3 + 0];v._pos[1] = attrib.vertices[idx.vertex_index * 3 + 1];v._pos[2] = attrib.vertices[idx.vertex_index * 3 + 2];// vtv._texCoord[0] = attrib.texcoords[idx.texcoord_index * 2 + 0];v._texCoord[1] = attrib.texcoords[idx.texcoord_index * 2 + 1];v._texCoord[1] = 1.0f - v._texCoord[1];uniqueVertices[idx] = mo_vertices.size();mo_indices.push_back((uint32_t)mo_vertices.size());mo_vertices.push_back(v);}else{mo_indices.push_back((uint32_t)iter->second);}++i;}}debug(format("解析obj模型完成:v{},i{}", mo_vertices.size(), mo_indices.size()));return ret;

上面用到的哈希函数:

struct equal_idx{bool operator()(const tinyobj::index_t& a, const tinyobj::index_t& b) const{return a.vertex_index == b.vertex_index&& a.texcoord_index == b.texcoord_index&& a.normal_index == b.normal_index;}};struct hash_idx {size_t operator()(const tinyobj::index_t& a) const{return ((a.vertex_index^ a.texcoord_index << 1) >> 1)^ (a.normal_index << 1);}};

最后打印出来的数据如下:

对于材质的处理,漫反射贴图即是基本贴图,而法线(凹凸)贴图、漫反射率、菲涅耳系数、光滑度等需要渲染管线支持并与光照计算产生效果。

四、完整代码

可以此处获取最新的源码(我会改用Assimp,并添加骨骼动画、Blinn-Phong光照模型),也可以用后面的:DND/src/DND.ModelObject.cpp · 略游/DND -

如果有用,欢迎点赞、收藏、关注,我将更新更多C++相关的文章。

#define TINYOBJLOADER_IMPLEMENTATION#include <tiny_obj_loader.h>struct equal_idx{bool operator()(const tinyobj::index_t& a, const tinyobj::index_t& b) const{return a.vertex_index == b.vertex_index&& a.texcoord_index == b.texcoord_index&& a.normal_index == b.normal_index;}};struct hash_idx {size_t operator()(const tinyobj::index_t& a) const{return ((a.vertex_index^ a.texcoord_index << 1) >> 1)^ (a.normal_index << 1);}};float ShininessToRoughness(float Ypoint){float a = -1;float b = 2;float c;c = (Ypoint / 100) - 1;float D;D = b * b - (4 * a * c);float x1;x1 = (-b + sqrt(D)) / (2 * a);return x1;}vector<ModelObject*> ModelObject::_load_obj_2(string_view path_name){string str_path = string{ path_name };string str_base = String::EraseFilename(path_name);const char* filename = str_path.c_str();const char* basepath = str_base.c_str();bool triangulate = true;debug(format("开始加载obj文件:{},{}", filename, basepath));tinyobj::attrib_t attrib; // 所有的数据放在这里std::vector<tinyobj::shape_t> shapes;//子模型std::vector<tinyobj::material_t> materials;std::string warn;std::string err;bool b_read = tinyobj::LoadObj(&attrib, &shapes, &materials, &warn, &err, filename,basepath, triangulate);//打印错误if (!warn.empty())debug_warn(warn);if (!err.empty()) debug_err(err);if (!b_read){debug_err(format("读取obj文件失败:{}", path_name));return {};}debug(format("顶点数:{}", attrib.vertices.size() / 3));debug(format("法线数:{}", attrib.normals.size() / 3));debug(format("UV数:{}", attrib.texcoords.size() / 2));debug(format("子模型数:{}", shapes.size()));debug(format("材质数:{}", materials.size()));//obj只有一个ModelObjectvector<ModelObject*> ret;ModelObject* model_object = new ModelObject;std::vector<Vertex>& mo_vertices = model_object->_allVertex;std::vector<uint32_t>& mo_indices = model_object->_allIndex;vector<ModelObjectMaterial>& mo_material = model_object->_allMaterial;ret.push_back(model_object);//------------------获取材质-------------------mo_material.resize(materials.size());for (size_t i = 0; i < materials.size(); ++i){tinyobj::material_t m = materials[i];debug(format("材质:{},{}", i, m.name));ModelObjectMaterial& material = model_object->_allMaterial[i];material._materialName = m.name;material._material._diffuseAlbedo = { m.diffuse[0], m.diffuse[1], m.diffuse[2], 1.0f };material._material._fresnelR0 = { m.specular[0], m.specular[1], m.specular[2] };material._material._roughness = ShininessToRoughness(m.shininess);if(!m.diffuse_texname.empty())material._pathTexDiffuse = str_base + m.diffuse_texname;if (!m.normal_texname.empty())//注意这里凹凸贴图(bump_texname)更常见material._pathTexNormal = str_base + m.normal_texname;}//------------------获取模型-------------------//按 材质 放入面的顶点vector<vector<tinyobj::index_t>> all_sub;all_sub.resize(1 + materials.size());//0为默认for (size_t i = 0; i < shapes.size(); i++) {//每一个子shapetinyobj::shape_t& shape = shapes[i];size_t num_index = shape.mesh.indices.size();size_t num_face = shape.mesh.num_face_vertices.size();debug(format("读取子模型:{},{}", i, shape.name));debug(format("索引数:{};面数:{}", num_index, num_face));//当前mesh下标(每个面递增3)size_t index_offset = 0;//每一个面for (size_t j = 0; j < num_face; ++j){int index_mat = shape.mesh.material_ids[j];//每个面的材质vector<tinyobj::index_t>& sub_idx = all_sub[1 + index_mat];sub_idx.push_back(shape.mesh.indices[index_offset++]);sub_idx.push_back(shape.mesh.indices[index_offset++]);sub_idx.push_back(shape.mesh.indices[index_offset++]);}}//生成子模型,并填入顶点std::unordered_map<tinyobj::index_t, size_t, hash_idx, equal_idx>uniqueVertices;//避免重复插入顶点size_t i = 0;for (vector<tinyobj::index_t>& sub_idx : all_sub){ModelObjectSub sub;sub._range._offsetIndex = i;sub._range._countTriangle = sub_idx.size() / 3;model_object->_allSub.push_back(sub);for (tinyobj::index_t& idx : sub_idx){auto iter = uniqueVertices.find(idx);if (iter == uniqueVertices.end()){Vertex v;//vv._pos[0] = attrib.vertices[idx.vertex_index * 3 + 0];v._pos[1] = attrib.vertices[idx.vertex_index * 3 + 1];v._pos[2] = attrib.vertices[idx.vertex_index * 3 + 2];// vtv._texCoord[0] = attrib.texcoords[idx.texcoord_index * 2 + 0];v._texCoord[1] = attrib.texcoords[idx.texcoord_index * 2 + 1];v._texCoord[1] = 1.0f - v._texCoord[1];uniqueVertices[idx] = mo_vertices.size();mo_indices.push_back((uint32_t)mo_vertices.size());mo_vertices.push_back(v);}else{mo_indices.push_back((uint32_t)iter->second);}++i;}}debug(format("解析obj模型完成:v{},i{}", mo_vertices.size(), mo_indices.size()));return ret;}

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。