100字范文,内容丰富有趣,生活中的好帮手!
100字范文 > 一种石墨烯改性的防紫外耐腐蚀复合水性聚氨酯涂料及其制备方法与流程

一种石墨烯改性的防紫外耐腐蚀复合水性聚氨酯涂料及其制备方法与流程

时间:2022-03-10 05:35:34

相关推荐

一种石墨烯改性的防紫外耐腐蚀复合水性聚氨酯涂料及其制备方法与流程

本发明属于涂料技术领域,具体地,涉及一种石墨烯改性的防紫外耐腐蚀复合水性聚氨酯涂料及其制备方法。

背景技术:

环境污染日益得到了各国的关注和重视,其中挥发性有机化合物作为代表,它的排放受到了严格限制。因此具有低污染型涂料得到了迅速发展,水性聚氨酯涂料就是其代表之一。水性聚氨酯涂料是以水为分散介质形成的不含或含有少量有机溶剂的二元胶态体系,具有很多优点,例如,无臭、无污染、无毒、易改性等。在汽车、建筑涂料、管道和储罐涂层等许多领域得到广泛应用。但wpu的耐水、耐介质、耐腐蚀性能差,不耐水蒸气及氧气渗透等缺点也严重限制了使用性能。受污染的wpu很容易由于自身组成成分为微生物的生存提供了条件,从而会导致霉变、变质等问题,影响性能也会对人体健康造成危害。目前有效的解决方法是在水性聚氨酯涂料中引入环氧树脂、添加抗紫外剂、防霉杀菌剂等。对于传统的抗紫外剂(有机紫外吸收整理剂、无机纳米颗粒紫外吸收剂)和防霉杀菌剂(ag、tio2、zno纳米颗粒),存在着对身体的危害、成本昂贵等问题。

石墨烯由于独特的二维结构和优异的热学、力学、光学和电学等性质,将石墨烯作为填料加入到聚合物中,形成的复合材料可以增强和改善原本性能。大量研究表明,石墨烯与水性聚氨酯的复合,能够改善水性聚氨酯涂层的力学性能,抗静电性和抗水性等。但由于石墨烯片层间强的范德华力(π-π堆积),容易吸附团聚在一起,从而在许多有机溶剂和高分子中分散性很差,影响其在聚合物中的相容性和分散性,对复合材料的性能产生不利影响。

技术实现要素:

本发明针对现有技术的不足,提供了一种石墨烯改性的防紫外耐腐蚀复合水性聚氨酯涂料。该涂料具有能够吸收屏蔽紫外线,增强了抗紫外防老化性能、耐腐蚀、抗菌、自清洁等优点。

本发明的目的是通过以下技术方案实现的:一种石墨烯改性的防紫外耐腐蚀复合水性聚氨酯涂料,所述复合水性聚氨酯涂料通过以下方法制备得到:

(1)氮化碳量子点水溶液的制备:

(1.1)将2~6g氮化碳纳米片加入到80~240ml由浓度为18mol/l的浓硫酸和浓度为16mol/l的浓硝酸按体积比为1:1~2:1组成的混合溶液中,在60~80℃水浴下,搅拌2~8h,冷却至室温后,再超声处理12~24h,得到氮化碳量子点混合溶液;

(1.2)在搅拌的状态下,向步骤(1.1)中的氮化碳量子点混合溶液中加入40~100ml浓度为30wt%的过氧化氢溶液,搅拌24~48h后,离心洗涤、过滤,得到0.01~1mg/ml氮化碳量子点水溶液;离心速率为10000rpm,离心时间为10min;

(2)氮化碳量子点/石墨烯复合粉末的制备:

(2.1)往10~30g浓度为0.1~5mg/ml的石墨烯水分散液中加入4~12g步骤1制备的氮化碳量子点水溶液,超声混合,形成氮化碳量子点/石墨烯复合水溶液;

(2.2)通过雾化干燥法将步骤(2.1)的氮化碳量子点/石墨烯复合水溶液干燥,雾化干燥温度为80~180oc,得到氮化碳量子点/石墨烯复合粉末。

(3)石墨烯改性的复合水性聚氨酯的制备:

(3.1)将35~65g异氰酸酯、35~60g二元醇,在70~90℃和氮气保护下搅拌回流1~2h,得到第一溶液;

(3.2)将5~20g扩链剂、0.5~3g亲水扩链剂、80~100g稀释剂在40~60℃下加入到步骤(3.1)中的第一溶液中,搅拌2~4h,再加入1.5~5g中和剂搅拌10~30min,得到第二溶液;

(3.3)取0.01~5g氮化碳量子点/石墨烯复合粉末加入到250~300g的去离子水中,超声30~60min,加入到50~80g步骤(3.2)的第二溶液中进行分散乳化,通过旋转蒸发法除去稀释剂,得到石墨烯改性的复合水性聚氨酯。

进一步地,步骤(2.1)中所述石墨烯由单层石墨烯、双层石墨烯、多层石墨烯、石墨烯微球中的一种或者多种按照任意比例混合组成。

进一步地,步骤(3.1)中所述异氰酸酯由二苯甲烷-4,4’-二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯中的一种或者多种按照任意配比混合组成。

进一步地,步骤(3.1)中所述二元醇由聚碳酸酯二元醇、聚氧化丙烯二元醇、聚己内酯二元醇、聚己二酸新戊二醇酯二醇中的一种或者多种按照任意配比混合组成。

进一步地,步骤(3.2)中所述扩链剂由丁二醇、己二醇、戊二醇、一缩乙二醇、乙二胺、二乙烯三胺中的一种或者多种按照任意配比混合组成。

进一步地,步骤(3.2)中所述亲水扩链剂为二羟基甲基丙酸。

进一步地,步骤(3.2)中所述稀释剂为丙酮、甲乙酮、丁酮中的一种或者多种按照任意配比混合组成。

进一步地,步骤(3.2)中所述中和剂为三乙胺。

本发明具有的有益效果是:

(1)通过硫酸、硝酸、过氧化氢以及超声处理得到亲水性氮化碳量子点,与石墨烯量子点相比,此氮化碳量子点制备方法简单、成本低且耐高温,表面有着含氧基团,使其具有亲水性,可以良好的在水中分散,量子点通过静电自组装负载在石墨烯表面,量子点表面的含氧基团可以进行电离,增加之间的排斥力,使整个复合材料可以有效均匀地分散在水性聚氨酯中;

(2)石墨烯在紫外线防护起到很好地作用,这是因为碳原子组成的共轭结构与紫外线能量相匹配,这样可以有效地吸收屏蔽紫外线,此外,光催化剂氮化碳的负载可以进一步增强对紫外光的吸收;石墨烯加入到水性聚氨酯中,其共轭结构可以与一些含氧自由基发生作用,减少了自由基的存在,对抗紫外防老化起到了重要的作用;

(3)石墨烯由sp2杂化碳原子构成了致密的二维结构,可以作为很好的阻隔材料,加入到复合材料中能够起到减小氯离子的扩散系数,进一步地可以改善水性聚氨酯耐腐蚀性能差的状况;

(4)改性水性聚氨酯中含有的氮化碳量子点和石墨烯紧密结合、相互作用,可以更加有效地吸收紫外光,其中氮化碳更是可以对可见光进行吸收,激发出电子-空穴对,此电子和空穴对有着很强的光催化还原能力和氧化能力,可以实现自清洁效用。此外石墨烯有着优良的电子传输性质和高的载流子迁移率与氮化碳形成的复合材料可以促进电子转移和电荷分离,增强光催化活性;

(5)石墨烯有着独特的二维纳米边缘、表面少量的基团以及高的比表面积,这些能够切割、包裹细菌,促进细菌氧化应激反应,从而起到抗菌抑菌的效果,此外氮化碳量子点利用自身光催化作用使微生物组织细胞失活,也能够起到抗菌抑菌的作用。

具体实施方式

下面结合实施例对本发明进行进一步说明。

实施例1

(1)氮化碳量子点水溶液的制备:

(1.1)将4g氮化碳纳米片加入到180ml由浓度为18mol/l的浓硫酸和浓度为16mol/l的浓硝酸按体积比为2:1组成的混合溶液中,在80℃水浴下,搅拌6h,冷却至室温后,再超声处理20h,得到氮化碳量子点混合溶液;

(1.2)在搅拌的状态下,向步骤(1.1)中的氮化碳量子点混合溶液中缓慢加入40ml浓度为30wt%的过氧化氢溶液,搅拌48h后,在10000rpm转速下离心洗涤10min,过滤,得到0.5mg/g亲水性氮化碳量子点水溶液。

(2)氮化碳量子点/石墨烯混合粉末的制备:

(2.1)往30g浓度为1mg/g的石墨烯水分散液中加入到6g亲水性氮化碳量子点水溶液,超声混合,形成氮化碳量子点/石墨烯复合水溶液;

(2.2)通过雾化干燥法将步骤(2.1)的氮化碳量子点/石墨烯复合水溶液干燥,雾化干燥温度为120℃,得到氮化碳量子点/石墨烯复合粉末。

(3)石墨烯改性的复合水性聚氨酯的制备:

(3.1)将55g异佛尔酮二异氰酸酯、50g聚己内酯二元醇,加入到500ml三颈烧瓶中,在70℃和氮气保护下搅拌回流2h,得到第一混合溶液;

(3.2)将10g二乙烯三胺、3g二羟基甲基丙酸、100g丙酮,在50℃下加入到步骤(3.1)中的第一混合溶液中,进行搅拌3h,之后再加入4g三乙胺搅拌20min,得到第二混合溶液;

(3.3)取1.0g氮化碳量子点/石墨烯复合粉末加入到250g的去离子水中,超声30min,在剪切下缓慢地加入到80g步骤(3.2)的第二混合溶液中进行分散乳化,通过旋转蒸发法除去丙酮,得到石墨烯改性的复合水性聚氨酯。

经以上步骤,此时,通过石墨烯改性的水性聚氨酯涂料得到的涂层,紫外防护系数为74.8,抗拉强度为17.7±1.7mpa,在0.5m氯化钠水溶液中浸泡7d后,抗拉强度为12.9±1.2mpa。

实施例2

(1)氮化碳量子点水溶液的制备:

(1.1)将4g氮化碳纳米片加入到180ml由浓度为18mol/l的浓硫酸和浓度为16mol/l的浓硝酸按体积比为2:1组成的混合溶液中,在80℃水浴下,搅拌6h,冷却至室温后,再超声处理20h,得到氮化碳量子点混合溶液;

(1.2)在搅拌的状态下,向步骤(1.1)中的氮化碳量子点混合溶液中缓慢加入40ml浓度为30wt%过氧化氢溶液,搅拌48h后,在10000rpm转速下离心洗涤10min,过滤,得到0.5mg/g亲水性氮化碳量子点水溶液。

(2)氮化碳量子点/石墨烯混合粉末的制备:

(2.1)往20g浓度为1mg/g石墨烯水分散液中加入到10g亲水性氮化碳量子点水溶液,超声混合,形成氮化碳量子点/石墨烯复合水溶液;

(2.2)通过雾化干燥法将步骤(2.1)的氮化碳量子点/石墨烯复合水溶液干燥,雾化干燥温度为120℃,得到氮化碳量子点/石墨烯复合粉末。

(3)石墨烯改性的复合水性聚氨酯的制备:

(3.1)将55g异佛尔酮二异氰酸酯、50g聚己内酯二元醇,加入到500ml三颈烧瓶中,在70℃和氮气保护下搅拌回流2h,得到第一混合溶液;

(3.2)将10g二乙烯三胺、3g二羟基甲基丙酸、100g丙酮,在50℃下加入到步骤(3.1)中的第一混合溶液中,进行搅拌3h,之后再加入4g三乙胺搅拌20min,得到第二混合溶液;

(3.3)取1.0g氮化碳量子点/石墨烯复合粉末加入到250g的去离子水中,超声30min,在剪切下缓慢地加入到80g步骤(3.2)的第二混合溶液中进行分散乳化,通过旋转蒸发法除去丙酮,得到石墨烯改性的复合水性聚氨酯。

经以上步骤,此时,通过石墨烯改性的水性聚氨酯涂料得到的涂层,紫外防护系数为43.7,抗拉强度为22.3±1.5mpa,在0.5m氯化钠水溶液中浸泡7d后,抗拉强度为15.1±1.3mpa。

实施例3

(1)氮化碳量子点水溶液的制备:

(1.1)将4g氮化碳纳米片加入到180ml由溶度为18mol/l的浓硫酸和浓度为16mol/l的浓硝酸按体积比为2:1组成的混合溶液中,在80℃水浴下,搅拌6h,冷却至室温后,再超声处理20h,得到氮化碳量子点混合溶液;

(1.2)在搅拌的状态下,向步骤(1.1)中的氮化碳量子点混合溶液中缓慢加入40ml浓度为30wt%过氧化氢溶液,搅拌48h后,在10000rpm转速下离心洗涤10min,过滤,得到0.5mg/g亲水性氮化碳量子点水溶液。

(2)氮化碳量子点/石墨烯混合粉末的制备:

(2.1)往30g浓度为1mg/g石墨烯水分散液中加入到6g亲水性氮化碳量子点水溶液,超声混合,形成氮化碳量子点/石墨烯复合水溶液;

(2.2)通过雾化干燥法将步骤(2.1)的氮化碳量子点/石墨烯复合水溶液干燥,雾化干燥温度为120℃,得到氮化碳量子点/石墨烯复合粉末。

(3)石墨烯改性的复合水性聚氨酯的制备:

(3.1)将55g异佛尔酮二异氰酸酯、50g聚己内酯二元醇,加入到500ml三颈烧瓶中,在70℃和氮气保护下搅拌回流2h,得到第一混合溶液;

(3.2)将10g二乙烯三胺、3g二羟基甲基丙酸、100g丙酮,在50℃下加入到步骤(3.1)的第一混合溶液中,搅拌3h,之后再加入4g三乙胺搅拌20min,得到第二混合溶液;

(3.3)取0.2g氮化碳量子点/石墨烯复合粉末加入到250g的去离子水中,超声30min,在剪切下缓慢地加入到80g步骤(3.2)的第二混合溶液中进行分散乳化,通过旋转蒸发法除去丙酮,得到石墨烯改性的复合水性聚氨酯。

经以上步骤,此时,通过石墨烯改性的水性聚氨酯涂料得到的涂层,紫外防护系数为34.5,抗拉强度为14.6±2.0mpa,在0.5m氯化钠水溶液中浸泡7d后,抗拉强度为9.0±1.1mpa。

对比例1

(1.1)将55g异佛尔酮二异氰酸酯、50g聚己内酯二元醇,加入到500ml三颈烧瓶中,在70℃和氮气保护下搅拌回流2h,得到第一混合溶液;

(1.2)将10g二乙烯三胺、3g二羟基甲基丙酸、100g丙酮,在50℃下加入到步骤(3.1)中的第一混合溶液中,搅拌3h,之后再加入4g三乙胺搅拌20min,得到第二混合溶液;

(1.3)将250g的去离子水,在剪切下缓慢地加入到80g步骤(3.2)的第二混合溶液中进行分散乳化,通过旋转蒸发法除去丙酮,得到石墨烯改性的复合水性聚氨酯。

经以上步骤,此时,通过水性聚氨酯涂料得到的涂层,紫外防护系数为17.2,抗拉强度为12.8±1.3mpa,在0.5m氯化钠水溶液中浸泡7d后,抗拉强度为6.8±1.5mpa。

从实施例1~3和对比例1可以看出,氮化碳量子点/石墨烯复合材料加入水性聚氨酯中,防紫外性能大幅增强,涂层的抗拉强度以及在氯化钠水溶液中浸泡后的抗拉强度都有所增强,得益于石墨烯在水性聚氨酯中均匀的分布。此外,涂层在0.5m氯化钠水溶液中浸泡7d后,实施例1中涂层比原先不浸泡的涂层抗拉强度降低了27.1%,实施例2中涂层比原先不浸泡的涂层抗拉强度降低了32.1%,可能的原因是石墨烯致密的二维结构,可以作为很好的阻隔材料,起到了减小氯离子的扩散系数,从而导致盐水中浸泡后抗拉强度的降低幅度相对较少,但实施例2中涂层初始的抗拉强度要高于实施例1中的,此原因可能由于氮化碳量子点在石墨烯表面负载比导致的,氮化碳量子点具有亲水性,表面的含氧官能团可以进行电离,增加之间的排斥力,可以使石墨烯更好地分散在水性聚氨酯中。负载比太小,石墨烯量多可能会导致部分聚集,影响分散,从而导致性能的改变。

实施例4

(1)氮化碳量子点水溶液的制备:

(1.1)将2g氮化碳纳米片加入到80ml由浓度为18mol/l的浓硫酸和浓度为16mol/l的浓硝酸按体积比为1:1组成的混合溶液中,在60℃水浴下,搅拌8h,冷却至室温后,再超声处理24h,得到氮化碳量子点混合溶液;

(1.2)在搅拌的状态下,向步骤(1.1)中的氮化碳量子点混合溶液中缓慢加入60ml浓度为30wt%过氧化氢溶液,搅拌24h后,在10000rpm转速下离心洗涤10min,过滤,得到0.01mg/g亲水性氮化碳量子点水溶液。

(2)氮化碳量子点/石墨烯混合粉末的制备:

(2.1)往15g浓度为0.1mg/g石墨烯水分散液中加入到12g亲水性氮化碳量子点水溶液,超声混合,形成氮化碳量子点/石墨烯复合水溶液;

(2.2)通过雾化干燥法将步骤(2.1)的氮化碳量子点/石墨烯复合水溶液干燥,雾化干燥温度为80℃,得到氮化碳量子点/石墨烯复合粉末。

(3)石墨烯改性的复合水性聚氨酯的制备:

(3.1)将65g二苯甲烷-4,4’-二异氰酸酯、60g聚乙二酸新戊二元醇,加入到500ml三颈烧瓶中,在80℃和氮气保护下搅拌回流1h,得到第一混合溶液;

(3.2)将20g戊二醇、乙二胺(重量比1:2),0.5g二羟基甲基丙酸、80g丁酮在40℃下加入到步骤(3.1)中的第一混合溶液中,进行搅拌4h,之后再加入5g三乙胺搅拌30min,得到第二混合溶液;

(3.3)取0.01g氮化碳量子点/石墨烯复合粉末加入到250g的去离子水中,超声30min,在剪切下缓慢地加入到60g步骤(3.2)的第二混合溶液中进行分散乳化,通过旋转蒸发法除去丁酮,得到石墨烯改性的复合水性聚氨酯。

经以上步骤,此时,通过石墨烯改性的水性聚氨酯涂料得到的涂层,紫外防护系数为40.7,抗拉强度为13.6±1.8mpa,在0.5m氯化钠水溶液中浸泡7d后,抗拉强度为8.2±1.9mpa。

实施例5

(1)氮化碳量子点水溶液的制备:

(1.1)将6g氮化碳纳米片加入到240ml由浓度为18mol/l的浓硫酸和浓度为16mol/l的浓硝酸按体积比为1.5:1组成的混合溶液中,在80℃水浴下,搅拌2h,冷却至室温后,再超声处理12h,得到氮化碳量子点混合溶液;

(1.2)在搅拌的状态下,向步骤(1.1)中的氮化碳量子点混合溶液中缓慢加入100ml浓度为30wt%过氧化氢溶液,搅拌48h后,在10000rpm转速下离心洗涤10min,过滤,得到1mg/g亲水性氮化碳量子点水溶液。

(2)氮化碳量子点/石墨烯混合粉末的制备:

(2.1)往10g浓度为5mg/g石墨烯水分散液中加入到4g亲水性氮化碳量子点水溶液,超声混合,形成氮化碳量子点/石墨烯复合水溶液;

(2.2)通过雾化干燥法将步骤(2.1)的氮化碳量子点/石墨烯复合水溶液干燥,雾化干燥温度为180℃,得到氮化碳量子点/石墨烯复合粉末。

(3)石墨烯改性的复合水性聚氨酯的制备:

(3.1)将35g六亚甲基二异氰酸酯和异佛尔酮二异氰酸酯混合物、35g聚氧化丙烯二元醇和聚己内酯二元醇,加入到500ml三颈烧瓶中,在90℃和氮气保护下搅拌回流2h,得到第一混合溶液;

(3.2)将5g丁二醇,1g二羟基甲基丙酸、90g甲乙酮和丙酮,在60℃下加入到步骤(3.1)中的第一混合溶液中,搅拌2h,之后再加入1.5g三乙胺搅拌10min,得到第二混合溶液;

(3.3)取5g氮化碳量子点/石墨烯复合粉末加入到300g的去离子水中,超声60min,在剪切下缓慢地加入到50g步骤(3.2)的第二混合溶液中进行分散乳化,通过旋转蒸发法除去甲乙酮和丙酮,得到石墨烯改性的复合水性聚氨酯。

经以上步骤,此时,通过石墨烯改性的水性聚氨酯涂料得到的涂层,紫外防护系数为95.6,抗拉强度为15.4±1.5mpa,在0.5m氯化钠水溶液中浸泡7d后,抗拉强度为10.8±1.7mpa。

技术特征:

1.一种石墨烯改性的防紫外耐腐蚀复合水性聚氨酯涂料,其特征在于,所述复合水性聚氨酯涂料通过以下方法制备得到:

(1)氮化碳量子点水溶液的制备:

(1.1)将2~6g氮化碳纳米片加入到80~240ml由浓度为18mol/l的浓硫酸和浓度为16mol/l的浓硝酸按体积比为1:1~2:1组成的混合溶液中,在60~80℃水浴下,搅拌2~8h,冷却至室温后,再超声处理12~24h,得到氮化碳量子点混合溶液;

(1.2)在搅拌的状态下,向步骤(1.1)中的氮化碳量子点混合溶液中加入40~100ml浓度为30wt%的过氧化氢溶液,搅拌24~48h后,离心洗涤、过滤,得到0.01~1mg/ml氮化碳量子点水溶液;离心速率为10000rpm,离心时间为10min;

(2)氮化碳量子点/石墨烯复合粉末的制备:

(2.1)往10~30g浓度为0.1~5mg/ml的石墨烯水分散液中加入4~12g步骤1制备的氮化碳量子点水溶液,超声混合,形成氮化碳量子点/石墨烯复合水溶液;

(2.2)通过雾化干燥法将步骤(2.1)的氮化碳量子点/石墨烯复合水溶液干燥,雾化干燥温度为80~180℃,得到氮化碳量子点/石墨烯复合粉末。

(3)石墨烯改性的复合水性聚氨酯的制备:

(3.1)将35~65g异氰酸酯、35~60g二元醇,在70~90℃和氮气保护下搅拌回流1~2h,得到第一溶液;

(3.2)将5~20g扩链剂、0.5~3g亲水扩链剂、80~100g稀释剂在40~60℃下加入到步骤(3.1)中的第一溶液中,搅拌2~4h,再加入1.5~5g中和剂搅拌10~30min,得到第二溶液;

(3.3)取0.01~5g氮化碳量子点/石墨烯复合粉末加入到250~300g的去离子水中,超声30~60min,加入到50~80g步骤(3.2)的第二溶液中进行分散乳化,通过旋转蒸发法除去稀释剂,得到石墨烯改性的复合水性聚氨酯。

2.根据权利要求1所述复合水性聚氨酯涂料,其特征在于,步骤(2.1)中所述石墨烯由单层石墨烯、双层石墨烯、多层石墨烯、石墨烯微球中的一种或者多种按照任意比例混合组成。

3.根据权利要求1所述复合水性聚氨酯涂料,其特征在于,步骤(3.1)中所述异氰酸酯由二苯甲烷-4,4’-二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯中的一种或者多种按照任意配比混合组成。

4.根据权利要求1所述复合水性聚氨酯涂料,其特征在于,步骤(3.1)中所述二元醇由聚碳酸酯二元醇、聚氧化丙烯二元醇、聚己内酯二元醇、聚己二酸新戊二醇酯二醇中的一种或者多种按照任意配比混合组成。

5.根据权利要求1所述复合水性聚氨酯涂料,其特征在于,步骤(3.2)中所述扩链剂由丁二醇、己二醇、戊二醇、一缩乙二醇、乙二胺、二乙烯三胺中的一种或者多种按照任意配比混合组成。

6.根据权利要求1所述复合水性聚氨酯涂料,其特征在于,步骤(3.2)中所述亲水扩链剂为二羟基甲基丙酸。

7.根据权利要求1所述复合水性聚氨酯涂料,其特征在于,步骤(3.2)中所述稀释剂为丙酮、甲乙酮、丁酮中的一种或者多种按照任意配比混合组成。

8.根据权利要求1所述复合水性聚氨酯涂料,其特征在于,步骤(3.2)中所述中和剂为三乙胺。

技术总结

本发明公布了一种石墨烯改性的防紫外耐腐蚀复合水性聚氨酯涂料及其制备方法,属于涂料技术领域。本发明利用氮化碳量子点/石墨烯复合水溶液通过剪切乳化聚氨酯乳液制备合成石墨烯改性的复合水性聚氨酯涂料。该方法操作简单,可进行工业化生产,氮化碳量子点制备方法简单、成本低且耐高温,可做稳定剂使石墨烯均匀稳定地分散在水性聚氨酯涂料中,有效避免了石墨烯的团聚,不发生沉淀、絮凝,保存时间长。该石墨烯改性水性聚氨酯可以有效地吸收屏蔽紫外线,增强了抗紫外防老化性能,光催化剂氮化碳量子点的负载进一步增强了对紫外线的吸收;石墨烯可以减小氯离子的扩散系数,改善了水性聚氨酯耐腐蚀性能。同时,该涂料还具有抗菌、自清洁等优异的性能。

技术研发人员:彭闻;孙海燕;高超

受保护的技术使用者:杭州高烯科技有限公司

技术研发日:.09.19

技术公布日:.12.20

本内容不代表本网观点和政治立场,如有侵犯你的权益请联系我们处理。
网友评论
网友评论仅供其表达个人看法,并不表明网站立场。